Spermidine Is a Morphogenetic Determinant for Cell Fate Specification in the Male Gametophyte of the Water Fern Marsilea vestita W OA

نویسندگان

  • Faten Deeb
  • Corine M. van der Weele
  • Stephen M. Wolniak
چکیده

Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different stages of gametogenesis. Development in spermidine-depleted gametophytes was arrested before the completion of the last round of cell divisions. In spermidine-depleted spermatogenous cells, chromatin failed to condense properly, basal body positioning was altered, and the microtubule ribbon was in disarray. When cyclohexylamine, a spermidine synthase (SPDS) inhibitor, was added at the start of spermatid differentiation, the spermatid nuclei remained round, centrin failed to localize into basal bodies, thus blocking basal body formation, and the microtubule ribbon was completely abolished. In untreated gametophytes, spermidine made in the jacket cells moves into the spermatids, where it is involved in the unmasking of stored SPDS mRNAs, leading to substantial spermidine synthesis in the spermatids. We found that treating spores directly with spermidine or other polyamines was sufficient to unmask a variety of stored mRNAs in gametophytes and arrest development. Differences in patterns of transcript distribution after these treatments suggest that specific transcripts reside in different locations in the dry spore; these differences may be linked to the timing of unmasking and translation for that mRNA during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water fern Marsilea vestita.

Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different s...

متن کامل

Kinesin Motor Proteins Are Essential for Male Gametophyte Development in Marsilea Vestita

Title of Dissertation: KINESIN MOTOR PROTEINS ARE ESSENTIAL FOR MALE GAMETOPHYTE DEVELOPMENT IN MARSILEA VESTITA Erika Jean Tomei, Doctor of Philosophy, 2016 Dissertation directed by: Professor Stephen M. Wolniak, Department of Cell Biology and Molecular Genetics The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequen...

متن کامل

Cell cycle arrest allows centrin translation but not basal body formation during spermiogenesis in Marsilea.

Spermiogenesis in the water fern Marsilea vestita is a rapid process that requires the de novo formation of basal bodies in a cytoplasmic particle known as a blepharoplast. Spermiogenesis is activated by placing dry spores into water and is dependent upon the translation of new proteins from stored mRNAs with little, if any, new transcription. We looked at the necessity of cell division cycles ...

متن کامل

Binding of Tetrahymena dynein to axonemes of Marsilea vestita lacking the outer dynein arm.

Axonemes from the heterosporous water fern Marsilea vestita were fixed in the presence of tannic acid and examined by thin-section electron microscopy. Transverse sections revealed the normal 9+2 configuration except for the absence of the outer of the two dynein arms. Both arms were normally preserved in parallel preparations of Chlamydomonas axonemes. Isolated dynein from the ciliated protozo...

متن کامل

The fine structure of fertilization in the fern Marsilea vestita.

The ultrastructural details of fertilization in the fern Marsilea vestita, including gamete approach and fusion, the fate of the spermatozoid organelles and the development of a possible block to polyspermy are described. The spermatozoid approaches the egg through layers of mucilage that surround the megaspores. It moves down the neck of the archegonium into the cavity above the egg. In order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010